Semiconductor Quantum Photonics

Combining quantum confinement of excitons and optical confinement of photons in nanostructures allows to achieve the ultimate control of light-matter interaction. By devising quantum wires and quantum dots of specific configurations and integrating them into optical microcavities, we explore the generation of new states of lights, including single photons, correlated photons and photon entanglement.

 


Correlated photon emission

  • Single photon emission
  • Probing exciton dynamics

 

Wires and dots in optical microcavities

  • Quantum wires in microcavities
  • Quantum dots in microcavities

Selected publications:
 

  • M. Baier, S. Watanabe, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip and I. Abram,
    “Single-Photon Emission from Site-Controlled Pyramidal Quantum Dots”
    Appl. Phys. Lett. 84, 648-650 (2004).
  • A. Malko, M.H. Baier, E. Pelucchi, K. Leifer, D.Y. Oberli, D. Chek-al-kar and E. Kapon E
    “Localization of Excitons in Disordered Quantum Wires Probed by Single Photon Correlation Spectroscopy”
    Appl. Phys. Lett. 85, 5715-5717 (2004).
  • S. Watanabe, E. Pelucchi, K. Leifer, A. Malko, B. Dwir and E. Kapon,
    “Patterning of Confined-State Energies in Site-Controlled Semiconductor Quantum Dots”
    Appl. Phys. Lett, 86, 243105 (2005).
  • A. Malko, M. H. Baier, K. F. Karlsson, E. Pelucchi, D. Y. Oberli, and E. Kapon,
    “Optimization of the efficiency of single photon sources based on quantum dots under optical excitation”
    Appl. Phys. Lett. 88, 081905 (2006).
  • M.H. Baier, A. Malko, E. Pelucchi, D.Y. Oberli and E. Kapon,
    “Quantum Dot Exciton Dynamics Probed by Photon-Correlation Spectroscopy”
    Phys. Rev. B 73, 205321 (2006)